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Abstract

The R package diffpriv provides tools for statistics and machine learning under differential
privacy. Suitable for releasing analyses on privacy-sensitive data to untrusted third parties,
differential privacy has become the framework of choice for privacy-preserving learning. diff-
priv delivers: (a) implementations of generic mechanisms for privatizing non-private target
functions, including the Laplace, Gaussian, exponential and Bernstein mechanisms; (b) a
recent sensitivity sampler due to Rubinstein and Aldà (2017) that empirically estimates
the sensitivity of non-private targets—obviating mathematical analysis for exact sensitivity
bounds needed for most generic mechanisms; (c) an extensible framework for implementing
differentially-private mechanisms. Together, the components of diffpriv permit easy high-
utility privatization of complex analyses, learners and even black-box software programs.
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1. Introduction

Differential privacy (Dwork et al., 2006) has quickly become a key framework for semantic
guarantees of data privacy when releasing analysis on privacy-sensitive data to untrusted
third parties. The framework’s popularity is in part due to a suite of generic mechanisms
for privatizing non-private target functions of data i.e., statistics, estimation procedures,
and learners. Common to most generic mechanisms is the requirement that the non-private
target’s sensitivity to data set perturbation is known and bounded. Unfortunately, bound-
ing sensitivity can be prohibitively complex for potential end users. This paper describes
the diffpriv R package that implements generic mechanisms for differential privacy, along
with our recent sensitivity sampler that replaces exact sensitivity bounds with empirical
estimates (Rubinstein and Aldà, 2017). As a result, diffpriv privatizes a wide range of
procedures under random differential privacy (Hall et al., 2012), automatically without
mathematical analysis and in many cases achieving high utility. diffpriv v0.4.2 is available
from https://brubinstein.github.io/diffpriv/ the project homepage and CRAN from
https://cran.r-project.org/package=diffpriv under an open-source license.
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2. Generic Mechanisms for Differential Privacy

Fundamental to differential privacy is a privacy-sensitive data set (or database) D ∈ Dn

on domain D. In diffpriv a data set can be a list, matrix, data.frame or vector. We
say that a pair of databases D,D′ ∈ Dn is neighboring if they differ on exactly one record.
While individual records should not be revealed, we aim to release aggregate information on
D with a mechanism. A mechanism M : Dn → R is a random-valued function of databases
taking values in a response set R; implemented in diffpriv as virtual (abstract) class DPMech.

Definition 1 (Dwork et al., 2006) For ϵ > 0, mechanism M : Dn → R preserves ϵ-
differential privacy if for all neighboring pairs D,D′ ∈ Dn, measurable response sets R ⊆ R,
Pr (M(D) ∈ R) ≤ exp(ϵ) · Pr (M(D′) ∈ R). Alternatively for δ ∈ (0, 1), relaxed (ϵ, δ)-
differential privacy holds if Pr (M(D) ∈ R) ≤ exp(ϵ) · Pr (M(D′) ∈ R) + δ.

A mechanism preserves DP if its response distributions are close on neighboring pairs:
an adversary cannot determine an unknown record from responses, even with knowledge of
the remaining records. Privacy parameters ϵ (ϵ, δ) are encapsulated in class DPParamsEps
(DPParamsDel). DPMech generic method releaseResponse(mechanism, privacyParams,

X) takes privacy parameters and a sensitive dataset, to private response. Most generic
mechanisms in DP share a number of properties leveraged by the diffpriv package as follows.

Privatizing a target function. Many mechanisms M : Dn → R seek to privatize a
non-private target function f : Dn → B, with range B often coinciding with R. Accord-
ingly DPMech objects are initialized with target slot of type function. A mechanism’s
releaseResponse() method calls target to form privacy-preserving responses.

Normed target range space. Target f ’s output space B is typically imbued with a
norm, denoted ∥ · ∥B, needed for measuring the sensitivity of f ’s outputs to input pertur-
bation. diffpriv flexibly represents this norm within DPMech objects as described next.

Sensitivity-induced privacy. Many mechanisms achieve differential privacy by cali-
brating randomization to the sensitivity of target f . Insensitive targets need less response
randomization. On a pair of neighboring databases D,D′ ∈ Dn the sensitivity of f is
measured as ∆(D,D′) = ∥f(D) − f(D′)∥B. Global sensitivity is the largest such value
∆ = supD,D′ ∥f(D) = f(D′)∥B over all possible neighboring pairs. As we discuss in
(Rubinstein and Aldà, 2017), a broad class of generic mechanisms, taking sensitivity ∆
as a parameter, are sensitivity-induced private: for any neighboring pair D,D′ ∈ Dn if
∆(D,D′) ≤ ∆ then the mechanism M∆ run with parameter ∆ achieves Pr (M∆(D) ∈ R) ≤
exp(ϵ) ·Pr (M∆(D

′) ∈ R) for all R ⊆ R. When run with ∆ = ∆, this condition holds for all
neighboring pairs: M∆ satisfies ϵ-DP. Similarly for (ϵ, δ)-DP. In fact this is how differential
privacy is typically proved for such generic mechanisms. DPMech objects can be initialized
with a sensitivity argument, stored in an S4 slot of the same name. If the user provides a
manually-derived global sensitivity bound ∆, then releaseResponse() responses preserve
ϵ- or (ϵ, δ)-DP (depending on the specific mechanism). We now demonstrate this use case.

2.1 Example: Laplace Mechanism Release of the Sample Mean

diffpriv implements Laplace (Dwork et al., 2006), Gaussian (Dwork and Roth, 2014), expo-
nential (McSherry and Talwar, 2007), and Bernstein (Aldà and Rubinstein, 2017) mech-
anisms as DPMech subclasses DPMechLaplace, DPMechGaussian, DPMechExponential, and
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DPMechBernstein. An exponential example is included below. DPMechLaplace releases nu-
meric vectors, adopting the L1 norm (sum of absolutes) for ∥ · ∥B. The mechanism releases
vectors in R = B = Rd by adding an i.i.d. sample of d Laplace-distributed random variables
with means 0 and scales ∆/ϵ to f(D) to achieve ϵ-DP. DPMechGaussian also privatizes nu-
meric responses but under L2-sensitivity and weaker (ϵ, δ)-DP; DPMechBernstein leverages
the Laplace mechanism to release multivariate real-valued functions.

We next demonstrate Laplace privatization of the sample mean on bounded data Dn =
[0, 1]n, for which B dimension dims is one. Global sensitivity is readily bounded as 1/n.

library(diffpriv)

f <- function(X) mean(X) ## target function

n <- 100 ## dataset size

mechanism <- DPMechLaplace(target = f, sensitivity = 1/n, dims = 1)

D <- runif(n, min = 0, max = 1) ## the sensitive database in [0,1]^n

pparams <- DPParamsEps(epsilon = 1) ## desired privacy budget

r <- releaseResponse(mechanism, privacyParams = pparams, X = D)

cat("Private response r$response:", r$response,

"\nNon-private response f(D): ", f(D))

#> Private response r$response: 0.5244495

#> Non-private response f(D): 0.5343454

3. Sensitivity Sampling for Random Differential Privacy

When target global sensitivity is supplied as sensitivity within DPMech construction,
responses are differentially private. Global sensitivity is known for idealizations of e.g.,
coefficients for regularized logistic regression (Chaudhuri and Monteleoni, 2009) and the
SVM (Rubinstein et al., 2012; Chaudhuri et al., 2011). In complex applications such as
privatizing a software function, however, target’s global sensitivity may not be readily
available. For such cases, diffpriv implements the sensitivity sampler of Rubinstein and Aldà
(2017) which forms a high-probability estimate of target sensitivity by repeated probing of
sensitivity on random neighboring database pairs, leveraging tools from empirical process
theory. Like sensitivity estimates, resulting privacy holds with high probability.

Definition 2 (Hall et al., 2012) A mechanism M preserves (ϵ, γ)-random differential
privacy (with a corresponding form for ϵ, δ, γ) if ∀R ⊆ R,Pr (M(D) ∈ R) ≤ exp(ϵ) ·
Pr (M(D′) ∈ R) holds with probability at least 1− γ over random database pairs D,D′.

While weaker than ϵ-DP, RDP is arguably more natural than (ϵ, δ)-DP: The later safe-
guards all databases but not unlikely responses, while RDP protects against all responses
but not pathological databases (as defined by the database sampling distribution). The
sampling distribution can be anything meaningful e.g., uniform, a Bayesian prior, a density
from data privately fit by the Bernstein mechanism (Aldà and Rubinstein, 2017), etc.

The DPMech method sensitivitySampler(object, oracle, n, m, gamma) requires:
a mechanism object; a function oracle which outputs i.i.d. random databases of given size
n which should match the size of input data supplied later in calls to releaseResponse();
a sensitivity sample size m; and desired privacy confidence gamma. Either (but not both)
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of m, gamma can be omitted: the omitted resource will be optimized automatically. For
example m taken small (few hundred) reflects limited sampling time; small gamma (e.g., 0.05)
prioritizes privacy. The sensitivity sampler calls appropriate DPMech sensitivityNorm()

which implements ∆(D,D′) for the mechanism’s norm and stored target. New subclasses
of DPMech need only implement this method in order to take advantage of the sensitivity
sampler. After sensitivitySampler(), subsequent releaseResponse() results have a
privacy parameter slot of type DPParamsGam indicating response RDP.

3.1 Example: Frequent Characters with Sensitivity Sampling

All DPMech subclasses are sensitivity-induced private and can be sensitivity sampled. We
demonstrate the exponential mechanism, which privately optimizes a given objective s(r)
of candidate response r ∈ R. Its response distribution is proportional to exp(ϵ · s(r)/(2∆)).
Typically s depends on input D, and so DPMechExponential is initialized with target

that takes D and outputs score function s(r). That is, B = RR is a real-valued function
space on R and the class’s sensitivityNorm() implements the sup-norm (cf. Rubinstein
and Aldà, 2017). In practice, users supply target as an R closure as demonstrated below.
Given sensitivity of target, the mechanism preserves ϵ-DP; if sensitivitySampler()
estimates sensitivity with some gamma, then confidence γ =gamma RDP is preserved.

We can apply these ideas to find the most frequent a–z character within the top-10
computer scientist names from Semantic Scholar, subject to individual privacy. Exponential
privately maximizes total frequency. But without bounded name lengths, this function has
unbounded global sensitivity. We therefore use the sensitivity sampler for (1, 0.1)-RDP,
with an oracle that samples representative U.S. names with package randomNames.

library(randomNames) ## a package that generates representative random names

oracle <- function(n) randomNames(n)

D <- c("Michael Jordan", "Andrew Ng", "Andrew Zisserman","Christopher Manning",

"Jitendra Malik", "Geoffrey Hinton", "Scott Shenker",

"Bernhard Scholkopf", "Jon Kleinberg", "Judea Pearl")

n <- length(D)

f <- function(X) { function(r) sum(r == unlist(base::strsplit(X, ""))) }
rSet <- as.list(letters) ## the response set, letters a--z, must be a list

mechanism <- DPMechExponential(target = f, responseSet = rSet)

mechanism <- sensitivitySampler(mechanism, oracle = oracle, n = n, gamma = 0.1)

pparams <- DPParamsEps(epsilon = 1)

r <- releaseResponse(mechanism, privacyParams = pparams, X = D)

cat("Private response r$response: ", r$response,

"\nNon-private f(D) maximizer: ", letters[which.max(sapply(rSet, f(D)))])

#> Private response r$response: c

#> Non-private f(D) maximizer: e
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